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Kyrlidis and Brown [Phys. Rev. A 44, 8141 (1991)] assert that the modified weighted density approxi-
mation of Denton and Ashcroft [Phys. Rev. A 39, 4701 (1989)] may possess two solutions for the effective
density. We show here that it has either one well-defined solution or none, the latter when the physical
structure that is attempting to be mapped into an effective liquid does not exist. The absence of a solu-
tion when none is expected physically cannot, therefore, be characterized as a defect of the theory.

PACS number(s): 61.20.Gy, 64.70.Dv, 64.60.Cn

In a paper written about four years ago [1], Kyrlidis
and Brown made a comparison between two density-
functional theories, one the modified weighted density ap-
proximation [2] (MWDA) of Denton and Ashcroft and
the other the generalized effective liquid approximation
[3] of Lutsko and Baus. Their paper was motivated by an
aim to stabilize crystalline silicon utilizing a Stillinger-
Weber (SW) potential, an essential component of which is
the presence of three-body interactions reflecting the co-
valent nature of the bonding characteristic of silicon.
The authors observed that actual use of the SW potential
would have made the computational effort very demand-
ing and they resorted instead to a hard-sphere potential
that among others of its properties, is of a purely two-
body nature. On the basis of analysis with these purely
two-body interactions, it was subsequently stated that
within the chosen diamond structure some shortcomings
of weighted density approximations could then be re-
vealed.

It is well known, of course, that a diamond structure
cannot be stabilized without the presence of three-body
interactions, let alone with the hard-sphere potential,
which favors close-packed structures (and even then only
when the packing fraction exceeds 0.49). The authors re-
ported that their aim was to study the effects of the
chosen crystal lattice on the ensuing form of the weighted
density. However, the latter is not determined by the
(candidate) crystal structure alone; it is also determined
in part by the assumed interaction between particles,
which directly establishes the direct correlation function
of the uniform liquid and its excess free energy per parti-
cle, both being essential ingredients of the MWDA. For
a candidate diamond structure, the assumption of a
hard-sphere potential for the interparticle interaction,
even as a reference, is not a physically meaningful choice
since it lacks certain essential features necessary to stabi-
lize the particular lattice. Consequently, it is at once
questionable whether the approach described above can
be used as a test of any density-functional theory at all.
Further, even within the framework of their announced
goals, the authors made some statements that appear to
reveal a serious misunderstanding of the physical nature
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of the MWDA. In particular, they asserted repeatedly
that the MWDA can possess two solutions for the weight-
ed densities. These assertions seem to be based on an in-
terpretation that the MWDA amounts solely to the solu-
tion of Eq. (11) of their paper, namely,
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[here ¢, is the direct correlation function of the homo-
geneous system and f(p) the corresponding free energy
per particle.] This is simply not the case: a further and
quite essential ingredient of the MWDA is the constraint

lim pip(r)]=p (2)
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for any uniform density p, a relation that is fundamental
and one that is required by the normalization condition

fdrw(r;f)‘)=1 . (3)

As we show below, a proper recognition of the constraint
(2) leads immediately to a unique identification of the
solution of Eq. (1). The second “branch” shown in Fig.
1(b) of Ref. [1] is therefore not a MWDA solution be-
cause it does not satisfy the requirement (2) above and we
believe it has been wrongly characterized as such by the
authors.

From a quantitative point of view, an even more curi-
ous characteristic of what is termed ‘“‘second solution” is
its limiting behavior for small a. Insufficient data points
in Fig. 1(b) are provided for a rigorous analysis, but the
data point for the smallest value of ac? corresponds to a
weighted density po>~1.9, i.e., to a hard-sphere liquid
with a packing fraction §=(m/6)po>~1. It is quite ob-
vious that the packing fraction of the hard-sphere system
can never exceed the value 7/v'18=0.74 and even this is
a value appropriate to a fcc solid, not to a liquid. The
Percus-Yevick solution for ¢{? and the associated f(p)
break down long before the packing fraction reaches the
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apparent value unity, the physical attainment of which is
an impossibility since space cannot be completely filled
with nonoverlapping spheres. These quantities can only
be used within the density limits for which they are estab-
lished to be physically meaningful, which restricts the
density to values below the close-packing limit.

It is also straightforward to show that the value =1
cannot be a solution of the MWDA iteration for any
nonzero value of the localization parameter ac?. To see
this, consider Eq. (19) in Ref. [2], which is prec1se1y the
one solved by Kyrlidis and Brown for the fcc solid [to
which the results of Fig. 1(b) refer], but now written in a
slightly different form, namely,
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where {G} is the set of remprocal lattlce vectors of the
fcc lattice, 7, =(m/6)p,0°>, and ¢’ =c{¥ /o>. From the
Percus-Yevick solution for hard spheres, we can readily
factor out the singular part of f§ and 2> at #=1 to ob-
tain
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where both ¢ and 3 are by definition regular at §=1.
Substituting (5) into (4) we find

3

—G2/2a N
YYD e WG, %) | .
mBH(N(1—%) G=o

g, a)=n

(6)

From Eq. (6) it is immediately clear that §=1 can never
be a solution for any nonzero value of &, no matter how
small, simply because the right-hand side of Eq. (6)
diverges, whereas the left-hand side remains finite.
Though the “second branch” in Fig. 1(b) of Ref. [1] ap-
pears to approach exactly this limit, it is neither clear
from the figure nor from the accompanying text what its
detailed limiting behavior is. Might it, for example,
break down as a solution at some small but nonvanishing
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value of a? Were this to be the case, then the limit a—0
of this solution cannot exist, the conclusion then being
that the information in Fig. 1(b) is actually incomplete as
well as misleading. According to the general constraint
(2), the nonexistence of a uniform density limit certainly
rules as inadmissible the additionally proposed MWDA
solution. We believe that clarification of this essential
point is a significant omission on the part of the authors.

Finally, the authors take the MWDA to task, because
for diamond structures and for high values of the locali-
zation parameter, they are evidently unable to find a
mapping onto an effective liquid. As we point out above,
for hard-sphere interactions alone the diamond solid is
mechanically unstable, as is clear a priori. Thus, if for
given pairwise interactions a structure does not exist,
even in principle, and a proposed density functional ap-
proximation subsequently fails to map it into an effective
liquid, should this then be considered a defect of the
theory? If a “trial structure” is extremely unstable, i.e., it
has a very high excess free energy relative to the thermo-
dynamically correct state, there can be no physical reason
to expect that an effective liquid that has the same high
free-energy exists. The inability of the MWDA to locate
a solution should therefore be seen as a correct manifesta-
tion of the extreme instability of the solid and not as a
weakness of a particular version of density functional
theory.

Our conclusion is therefore this: in contrast to the
statements of the authors and in particular to the re-
marks about the MWDA made in the first paragraph of
the summary of Ref. [1], the solution of the MWDA,
when it exists, is always unique if proper account is taken
of the boundary condition that it has to satisfy for small
localizations. As far as we are aware there is as yet no
demonstrated ““pathology” in the MWDA, as the authors
state in their summary. In view of this, we believe that at
present their statement that the non-MWDA, unphysical
“second solution” should affect the choice of the density-
functional method used to minimize the free energy is
simply untenable.
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